Architectural gear ratio and muscle fiber strain homogeneity in segmented musculature.

نویسندگان

  • Emanuel Azizi
  • Elizabeth L Brainerd
چکیده

In the segmented axial musculature of fishes and amphibians, the patterns of muscle fiber shortening depend on both the orientation of muscle fibers relative to the long axis of the body as well as the distance of fibers from the neutral axis of bending (vertebral column). In this study we use the relatively simple architecture of salamander hypaxial muscles to explore the separate and combined effects of these morphological features on muscle fiber strains during swimming. In Siren lacertina the external oblique (EO) muscle has more obliquely oriented muscle fibers and is located further from the neutral axis of bending than the internal oblique (IO) muscle. To examine the effect of muscle fiber angle on strain patterns during swimming, we used sonomicrometry to quantify architectural gear ratio (AGR=longitudinal strain/fiber strain) in these two hypaxial muscles. By comparing the muscle fiber strains and shortening velocities of the EO and IO during swimming, we test whether variation in mediolateral position of the muscle layers is counteracted by their differences in AGR. We find that despite substantial differences in mediolateral position, the EO and IO undergo similar fiber strains and shortening velocities for a given amount of axial bending. Our results show that variation in muscle fiber angle acts to counteract differences in mediolateral position, thereby minimizing variation in muscle fiber strain and shortening velocity during swimming. These results highlight the significance of both muscle architecture and muscle moment arms in determining the fiber strains required for a given movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle fiber angle, segment bulging and architectural gear ratio in segmented musculature.

The anatomical complexity of myomeres and myosepta has made it difficult to develop a comprehensive understanding of the relationship between muscle fiber architecture, connective tissue mechanics, and locomotor function of segmented axial musculature in fishes. The lateral hypaxial musculature (LHM) of salamanders is less anatomically complex and therefore a good system for exploring the basic...

متن کامل

Geared up to stretch: pennate muscle behavior during active lengthening.

Many locomotor activities require muscles to actively lengthen, dissipate energy and decelerate the body. These eccentric contractions can disrupt cytoskeletal structures within myofibrils and reduce force output. We examined how architectural features of pennate muscles can provide a protective mechanism against eccentric muscle damage by limiting fascicle lengthening. It has been previously s...

متن کامل

Reliability of Ultrasound Imaging of the Trunk Musculature in Athletes with and without Hamstring Injuries

Background: Trunk muscles play an important role in providing both mobility and stability during dynamic tasks in athletes.The purpose of this study was to evaluate the within-day and between-day reliability of ultrasound (US) in measuringabdominal and lumbar multifidus muscle (MF) thickness in athletes with and without hamstring strain injury (HSI).Methods: Fifteen male socce...

متن کامل

Morphology and mechanics of myosepta in a swimming salamander (Siren lacertina).

In contrast to the complex, three-dimensional shape of myomeres in teleost fishes, the lateral hypaxial muscles of salamanders are nearly planar and their myosepta run in a roughly straight line from mid-lateral to mid-ventral. We used this relatively simple system as the basis for a mathematical model of segmented musculature. Model results highlight the importance of the mechanics of myosepta...

متن کامل

Plastic deformation analysis in parallel tubular channel angular pressing (PTCAP)

Parallel tubular channel angular pressing (PTCAP) process is a novel recently developed severe plastic deformation technique for fabrication of ultrafine grained (UFG) metallic tubes. This new process consists of two half cycles and is affected by several parameters such as channel angles, deformation ratio and curvature angles. In this paper, the effects of these parameters on the plastic defo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental zoology. Part A, Ecological genetics and physiology

دوره 307 3  شماره 

صفحات  -

تاریخ انتشار 2007